The McLaren F1 is a sports car designed and manufactured by McLaren Automotive. Originally a concept conceived by Gordon Murray, he convinced Ron Dennis to back the project and engaged Peter Stevens to design the exterior and interior of the car. On 31 March 1998, it set the record for the world's fastest production car in the world, reaching 231 mph with the rev limiter enabled, and 243 mph with the rev limiter removed.
The car features numerous proprietary designs and technologies; it is lighter and has a more streamlined structure than many modern sports cars, despite having one seat more than most similar sports cars, with the driver's seat located in the centre of two passengers' seating positions, providing driver visibility superior to that of a conventional seating layout. It features a powerful engine and is somewhat track oriented, but not to the degree that it compromises everyday usability and comfort. It was conceived as an exercise in creating what its designers hoped would be considered the ultimate road car. Despite not having been designed as a track machine, a modified race car edition of the vehicle won several races, including the 24 Hours of Le Mans in 1995, where it faced purpose-built prototype race cars. Production began in 1992 and ended in 1998. In all, 106 cars were manufactured, with some variations in the design.
In 1994, the British car magazine Autocar stated in a road test regarding the F1, "The McLaren F1 is the finest driving machine yet built for the public road." and that "The F1 will be remembered as one of the great events in the history of the car, and it may possibly be the fastest production road car the world will ever see."
In August 2013, at the Pebble Beach Concours d'Elegance, Gooding & Company auctioned off chassis 066 for a record sale price of US$8.47 million.
Gordon Murray insisted that the engine for this car be naturally aspirated to increase reliability and driver control. Turbochargers and superchargers increase power but they increase complexity and can decrease reliability as well as introducing an additional aspect of latency and loss of feedback. The ability of the driver to maintain maximum control of the engine is thus decreased. Murray initially approached Honda for a powerplant with 550 bhp, 600 mm block length and a total weight of 250 kg, it should be derived from the Formula One powerplant in the then-dominating McLaren/Honda cars. When Honda refused, Isuzu, then planning an entry into Formula One, had a 3.5-litre V12 engine being tested in a Lotus chassis. The company was very interested in having the engine fitted into the F1. However, the designers wanted an engine with a proven design and a racing pedigree.
The McLaren F1 was the first production road car to use a complete carbon fibre reinforced plastic monocoque chassis structure. Aluminium and magnesium were used for attachment points for the suspension system, inserted directly into the CFRP.
The car features a central driving position – the driver's seat is located in the middle, ahead of the fuel tank and ahead of the engine, with a passenger seat slightly behind and on each side. The doors on the vehicle move up and out when opened, and are thus of the butterfly type.
The engine produces high temperatures under full application and thus causes a high temperature variation in the engine bay from no operation to normal and full operation. CFRP becomes mechanically stressed over time from high heat transfer effects and thus the engine bay was not constructed from CFRP.
The McLaren F1 uses 235/45ZR17 front tyres and 315/45ZR17 rear tyres. These are specially designed and developed solely for the McLaren F1 by Goodyear and Michelin. The tyres are mounted on 17-by-9-inch and 17-by-11.5-inch cast magnesium wheels, protected by a tough protective paint. The five-spoke wheels are secured with magnesium retention pins.
The turning circle from kerb to kerb is 13 m , allowing the driver 2.8 turns from lock to lock.
Only 106 cars were manufactured, 64 of which were the standard street version, five were LMs, three were longtail roadcars, five prototypes, 28 racecars and one LM prototype. Production began in 1992 and ended in 1998. At the time of production each machine took around three and a half months to make.
Although production stopped in 1998, McLaren still maintains an extensive support and service network for the F1. There are eight authorised service centres throughout the world, and McLaren will on occasion fly a specialised technician to the owner of the car or the service centre. All of the technicians have undergone dedicated training in service of the McLaren F1. In cases where major structural damage has occurred, the car can be returned to McLaren directly for repair.
The F1 remains as of 2013 one of the fastest production cars ever made; as of July 2013 it is succeeded by very few cars, including the Koenigsegg Agera R, the Bugatti Veyron, the SSC Ultimate Aero TT, and the Bugatti Veyron Super Sport. However, all of the superior top speed machines use forced induction to reach their respective top speeds, whereas the McLaren F1 is naturally aspirated.
The title of "world's fastest production road car" is constantly in contention, especially because the term "production car" is not well-defined.
The McLaren F1 has a top speed of 240 mph, restricted by the rev limiter at 7500 rpm. The true top speed of the McLaren F1 was reached in April 1998 by the five-year-old XP5 prototype. Andy Wallace piloted it down the 9 km straight at Volkswagen's test track in Ehra-Lessien, Germany, setting a new world record of 243 mph at 8300 rpm. As Mario Andretti noted in a comparison test, the F1 is fully capable of pulling a seventh gear, thus with a higher gear ratio or a seventh gear the McLaren F1 would probably be able to reach an even greater top speed—something which can also be observed by noticing that the top speed was reached at 7800 rpm while the peak power is reached at 7400 rpm.
Source:
Picture Link:
Wikipedia Link:
0 comments:
Post a Comment